THE CRITICALLY ILL OLDER PERSON WITH:

SEPTIC SHOCK
• Older people carry the burden of sepsis

Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care

Derek C. Angus, MD, MPH, FCCM; Walter T. Linde-Zwirble; Jeffrey Lidicker, MA; Gilles Clermont, MD; Joseph Carcillo, MD; Michael R. Pinsky, MD, FCCM

(Crit Care Med 2001; 29:1303–1310)
• Older people carry the burden of sepsis

• Immunosenescence
• Co-morbidity
• Endothelial / mucosal atrophy
• Dependence – hospital, RACF
• Pre-admission functional decline
• Diagnostic challenges
SEPSIS TRIALS IN THE ELDERLY
SEPSIS TRIALS IN THE ELDERLY

142 sepsis trials including adults >65 years
Average cohort age <65 years in 87% trials
Single trial (0.7%) focussed on adults >65
There are few data specifically examining septic shock in the elderly. Most study cohorts are not representative of elderly patients. A small minority of studies conducted age-based subgroup analyses.

<table>
<thead>
<tr>
<th>Aspect of sepsis</th>
<th>Trial</th>
<th>Age</th>
<th>Age-based subgp analysis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Goal-directed therapy</td>
<td>Rivers</td>
<td>64/67</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>ProCESS (USA)</td>
<td>62</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>ARISE (ANZ)</td>
<td>63</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>ProMISe (UK)</td>
<td>64</td>
<td>Yes</td>
</tr>
<tr>
<td>Antibiotics trial</td>
<td>PHANTASi (pre-hospital ABs)</td>
<td>72</td>
<td>Yes</td>
</tr>
<tr>
<td>Fluid trials</td>
<td>SAFE (saline / 4% albumin)</td>
<td>59</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>VISEP (starch / Ringer's)</td>
<td>64/65</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>6S (starch / Ringer's)</td>
<td>66/67</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>ALBIOS (saline / 20% albumin)</td>
<td>69/70</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>SMART (saline / balanced fluid)</td>
<td>58</td>
<td>No</td>
</tr>
<tr>
<td>Vasopressor trials</td>
<td>SOAP II (NA vs DA)</td>
<td>67/68</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>VASST (NA vs NA+AVP)</td>
<td>59/62</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>CATS (NA vs ADR)</td>
<td>60/65</td>
<td>No</td>
</tr>
<tr>
<td>MAP target</td>
<td>SEPSISPAM</td>
<td>65</td>
<td>No</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>CORTICUS</td>
<td>63</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Adrenal</td>
<td>62/63</td>
<td>No</td>
</tr>
</tbody>
</table>
SEPTIC SHOCK - TREATMENT

- Cultures and antibiotics
- Fluids
- Vasopressors
- Corticosteroids
- Disposition decisions – ward vs ICU.
CULTURES + ANTIBIOTICS

- Elderly –
 - higher rates of bacteraemia
 - Gram negatives and multi-drug resistant organisms more likely
 - Specific pathogens e.g. Listeria
 - More likely to have ADR

Blood cultures and informed AB choice therefore vital
CULTURES + ANTIBIOTICS

- Antibiotic treatment ASAP after blood cultures.
- Evidence for narrow time targets doubtful – see:

Prehospital antibiotics in the ambulance for sepsis: a multicentre, open label, randomised trial

RCT with intervention = prehospital CRO for sepsis

CRO @ time = triage – 26 mins
ED AB @ time = triage + 70 mins

Antibiotics 96 mins earlier had no difference on mortality for sepsis, severe sepsis, or shock.
CULTURES + ANTIBIOTICS

- Antibiotic treatment ASAP after blood cultures.
- Evidence for narrow time targets doubtful – see:

 Prehospital antibiotics in the ambulance for sepsis: a multicentre, open label, randomised trial

 Nadia Alam, Erick Oskam, Patricia M Stassen, Pieterem van Exter, Peter M van de Ven, Harm R Haak, Frits Holleman, Arthur van Zanten, Hien van Leeuwen-Nguyen, Victor Bon, Bart A M Duineveld, Rishi S Nannan Panday, Mark H H Kramer, Prabath W B Nanayakkara, on behalf of the PHANTASI Trial Investigators and the ORCA (Onderzoeks Consortium Acute Geneeskunde) Research Consortium the Netherlands

- Narrow time to antibiotic targets will have consequences – poor (no?) cultures and poor AB choice.
FLUIDS - VOLUME

- SSC guidelines: 30 mL/kg crystalloid, then bolus to targets
- Controversy regarding volume in sepsis
- Elderly more prone to side effects from excess volume – is ventilation an option?
FLUIDS - TYPE

- Starch associated with renal dysfunction and mortality
- Hyperchloraemia associated with renal dysfunction and mortality

ORIGINAL ARTICLE

Hydroxyethyl Starch 130/0.42 versus Ringer’s Acetate in Severe Sepsis

ORIGINAL ARTICLE

Balanced Crystalloids versus Saline in Critically Ill Adults

ORIGINAL ARTICLE

Intensive Insulin Therapy and Pentastarch Resuscitation in Severe Sepsis

ALBIOS provides some evidence for albumin
FLUID SUMMARY

- Err on side of less rather than more volume, titrate
- Avoid starch
- Avoid hyperchloreaemia – consider balanced fluids rather than reflex saline
- Consider albumin – eg 20% albumin 100mL/hr X 3-4, +/- aim [ALB] >30 daily
- (Blood – transfusion trigger in elderly sepsis is anybody’s guess)
VASOPRESSORS

• **Noradrenaline** established 1st line vasopressor, however unproven benefit.
• Consider NA trial via sturdy PIVC or venous vygon catheter

• **Arginine vasopressin (AVP)** may have role – reduces NA requirements, constant dose.
• **Terlipressin** – long-acting (intermittent dose) selective V1 > V2 agonist
• **Selepressin** – highly selective V1 agonist, early trials promising.
STEROIDS

- Hydrocortisone 50mg q6h – for presumed adrenal insufficiency (arguably more common in elderly)
- Annane, CORTICUS conflicting. Luckily we have ADRENAL (2018):

 3800 patients with septic shock requiring invasive ventilation
 Mortality – no difference
 However faster shock resolution, shorter ICU and hospital LOS

Adjunctive Glucocorticoid Therapy in Patients with Septic Shock
SOURCE CONTROL

• Removal of infected foreign bodies – IDC, pacemaker, PIVC, CVAD
• Percutaneous drainage of collections: cholecystostomy, nephrostomy, ICC for empyema etc.
• Spinal anaesthesia may be an option
DISPOSITION

• Should I advocate for my elderly patient with septic shock to be admitted to ICU / retrieved?
• How can ward-based care be optimised?
DISPOSITION

• Should I advocate for my elderly patient with septic shock to be admitted to ICU / retrieved?

- Heavily dependent
- Poor quality of life, unaware
- Non-urinary sepsis
- Substantial co-morbidity
- Respiratory failure with underlying lung disease
- Declines ICU
- ‘Not determined to benefit’*

Consider benefits of ward-based care**
Older adults can expect the following after an emergency department intubation:

- 65 to 74 years old: 31% survive and return home, 40% survive and discharge to nursing home, 29% die in the hospital
- 75 to 79 years old: 23% survive and return home, 43% survive and discharge to nursing home, 34% die in the hospital
- 80 to 84 years old: 19% survive and return home, 41% survive and discharge to nursing home, 40% die in the hospital
- 85 to 90 years old: 15% survive and return home, 42% survive and discharge to nursing home, 43% die in the hospital
- >90 years old: 14% survive and return home, 36% survive and discharge to nursing home, 50% die in the hospital

DISPOSITION

- Should I advocate for my elderly patient with septic shock to be admitted to ICU / retrieved?

<table>
<thead>
<tr>
<th>Independent</th>
<th>Good quality of life</th>
<th>Urosepsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavily dependent</td>
<td>Poor quality of life</td>
<td>Non-urinary sepsis</td>
</tr>
<tr>
<td>Substantial co-morbidity</td>
<td>Respiratory failure with underlying lung disease</td>
<td>Declines ICU</td>
</tr>
<tr>
<td>‘Not determined to benefit’*</td>
<td>Consider benefits of ward-based care**</td>
<td></td>
</tr>
</tbody>
</table>
RBWH
Most ED patients hospitalised with septic shock are aged >65
Mortality increases linearly with age from (approx.) age 40
ICU admission rates drop sharply after age 70
SEPTIC SHOCK IN THE ELDERLY

- Conventional approach warranted – antibiotics, fluids, vasopressors, source control
- Key discussions regarding ICU admission.
- There are advantages to ward-based care, which may be optimised.